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Surface Diffusion Kinetics in the Adsorption of Acetic
Acid on Activated Carbon

S. K. GANGULY and A. N. GOSWAMI*
INDIAN INSTITUTE OF PETROLEUM
DEHRADUN-248005, INDIA

ABSTRACT

The recovery of acetic acid from industrial wastewaters is an important separa-
tion problem, and one of the routes suggested for this application is liquid phase
adsorption on activated carbon adsorbents. Designing an adsorber for such appli-
cations requires knowledge of equilibrium isotherm as well as adsorption rate
data. In the present work the kinetics of adsorption of acetic acid on activated
carbon has been studied. A three-parameter isotherm model has been used to
correlate the equilibrium data, and a combined external film transfer—surface diffu-
sion model has been used to simulate the experimental adsorption rate data. The
surface diffusivity values obtained range from 6 to 8.5 x 1077 c¢cm?/s, and the
values show a dependence on surface loading. These surface diffusivity values
can be used in modeling the column breakthrough behavior for this system.

INTRODUCTION

Acetic acid is a typical pollutant present in industrial wastewaters at
concentrations ranging from 0.1 to 5 wt%. Thus the wastewater from a
DMT plant in the petrochemical industry contains around 3-4 wt% acetic
acid. The recovery of acetic acid from such wastewaters is an important
problem, particularly as acetic acid forms valuable feedstock for the manu-
facture of a wide variety of chemicals. Whereas the separation of acetic
acid from water by conventional distillation is economic at concentrations
exceeding 70 wt% (1), for low concentrations in water (below 5 wt%),
adsorptive separations can provide a viable option.

* To whom correspondence should be addressed.
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Generally, activated carbon adsorbents have been suggested for the
removal of acetic acid from wastewater. A novel scheme has recently
been patented for the simultaneous removal and recovery of acetic acid
from water by concentration swing adsorption based on activated carbon
adsorbent (2). For the design of an adsorber for such applications, it is
necessary that accurate and reliable adsorption isotherm and adsorption
rate data be available. The rate of adsorption in general may be controlled
by a film resistance at the external surface of the adsorbent particle, or
by diffusion within the adsorbent particle, or by both film and internal
diffusional resistances. Kinetic models to describe the internal diffusional
resistances in an adsorbent particle are generally based on pore diffusion,
surface diffusion, or combined pore-surface diffusion models. Pore diffu-
sion pictures the adsorbate as diffusing in the fluid-filled pores of the
adsorbent and adsorbing on the internal walls. Adsorbed molecules are
then immobilized and can only migrate by desorption. Surface diffusion
visualizes the transport as occurring only on the surface of a pore wall
by jumping of adsorbate molecules between adjacent sites (3). Such a
model has been most frequently used to describe the kinetics of adsorption
on activated carbon systems in terms of an effective surface diffusion
coefficient (4).

The present work is part of our studies for the development of a liquid-
phase adsorption process for the recovery of acetic acid from petrochemi-
cal plant wastewaters and describes the estimation of surface diffusion
coefficient from batch kinetic data on acetic acid adsorption using a mathe-
matical model.

MODEL DESCRIPTION

The mathematical model used to describe the kinetics of adsorption of
acetic acid is basically a combined external film transfer surface diffusion
model recently proposed by Chatzopoulos et al. (5). These workers had,
however, modeled the kinetics of adsorption of toluene from water on
activated carbon, both for the case of a constant surface diffusivity as
well for the case of a concentration-dependant surface diffusivity. For the
latter case they report that an excessive computational effort is required. A
constant surface diffusivity has been used by several workers in modeling
kinetics of batch adsorption in activated carbon systems (6-8). In the
present work, this approach has been followed. For the equilibrium iso-
therm data correlation, we have used the three-parameter isotherm of the
type proposed by Radke and Prausnitz (9).
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The model equations are

99 _ Dold ,(dq
ot~ r [ar’ (ar M
IC: ¢t = 0, 0<r=R, q=0 Q)
BC:t>0, 4 0 and  Dopsd = kC - C
>0, = - an oS T «(C — Cs)
(3)
External solute balance:
dC 3w
VfE = ES—R‘kf (C - Cs) 4)
IC: ¢t =0, C =0Co (&)
Adsorption isotherm:
. (X]Cs
Gh-r = T aaCw ®

The equations have been nondimensionalized using the following quan-
tities:
u = CiCq, us = Cs/Co, n = q/qo, p = riR, 7 = Dot/R?

kfRCO 3 WqO 1
= —, A = s = -
! psDogo ViCo axC§? @

A numerical procedure based on a finite difference scheme (10) was used
to solve these equations.

EXPERIMENTAL

The adsorbent used in these studies was a granular activated carbon
supplied by Industrial Carbons Pvt. Ltd., Baroda. The characteristics of
this carbon are reported in Table 1. For equilibrium isotherm measure-
ments, the granular carbon was crushed. Prior to its use in both equilib-
rium as well as rate experiments, the carbon was washed with dilute hy-
drochloric acid and boiled several times with distilled water until the water
extract was neutral. The carbon was then dried at 150°C for 4 hours and
stored in a dessicator.
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TABLE 1
Physical Properties of ICA Grade Activated
Carbon and System Properties Used in

Simulation
Surface area (m?%g) 1080
Skeletal density (kg/m?) 2150
Apparent density (kg/m?) 730
Particle size (m) 0.0017
Volume of feed phase (L) 0.8

Adsorption Isotherm Measurements

Weighed amounts of activated carbon was taken in glass-jacketed coni-
cal flasks containing aqueous solutions of acetic acid of known concentra-
tion. The flasks were securely stoppered, attached to a mechanical shaker,
and the contents were maintained at 30 = 0.05°C by circulation of thermo-
stated liquid. The flasks were agitated for a period of 4 hours. Preliminary
experiments had established that no change in concentrations could be
detected after 2-3 hours. After equilibration, the aqueous phase was sam-
pled, filtered, and analyzed for acetic acid content by titration with stan-
dard alkali.

0/10
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jvt-0/2
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P

FIG. | Diagram of batch mixer.
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Adsorption Rate Measurements

Adsorption rate measurements were carried out in a glass-jacketed baf-
fled vessel with the dimensions shown in Fig. 1. In each experiment, 800
mL of aqueous acetic acid solution of known concentration was taken in
the vessel and stirred by a turbine impeller of the dimensions also given
in Fig. 1. The speed of the impeller was monitored by a digital tachometer.
The vessel contents were maintained at 30 = 0.05°C by circulation of
thermostated liquid from a circulation bath. Weighed amount of granular
activated carbon was then added, and the kinetic measurements were
started. During the course of the experiments, small samples of the aque-
ous phase were withdrawn at fixed time intervals, filtered, and analyzed
for their acetic acid content by titration with standard alkali.

RESULTS AND DISCUSSION

The experimental adsorption isotherm data were correlated by the
three-parameter isotherm model given in Eq. (6). A Nedler—Mead Simplex
optimization procedure (11) was used to determine the isotherm param-
eters from the experimental data. Figure 2 portrays the extent of fit
achieved using the model. The isotherm is

3 0.2733Cs
r=R 7 1 4 0.3816C%77°

q ®)

The batch kinetic studies have been carried out with three different
initial concentrations of acetic acid in the feed and with three different
dosages of carbon adsorbent. In all the experiments the impeller rpm was
maintained at 650 = 15. The experimental concentration decay curves
are shown in Figs. 3 to 6.

In diffusion of adsorbate into the adsorbent particle, the external film
resistance dominates during the initial stages of the process followed by
increasing contribution from the internal (pore, surface) diffusional resis-
tance as the adsorbate penetrates deeper inside the particle (12). The con-
centration decay curve for the first few minutes of the process can be
used to estimate the external film transfer resistance (12). A typical curve
for this system is shown in Fig. 7, and the external film transfer coefficient,
which was determined from the slope of this curve for each data set follow-
ing the procedure of Mathews and Weber (13), varies from 2.1 x 10~3
to 2.8 X 1073 cm/s. A value of 2.5 x 1072 cm/s was selected for the
external film transfer coefficient of this system for use in the simulations.
With this value and the system properties given in Table 1, the model
equations were solved for each experimental condition. The best fit esti-
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FIG. 2 Equilibrium isotherm for acetic acid adsorption on activated carbon at 30°C.

mates for the surface diffusion coefficient required for the simulation of
the concentration decay curves are tabulated in Table 2, and the model
predictions are compared with experiment in Figs. 3 to 6. It is seen that
the model predictions which have been made over a range of carbon dos-
ages and feed concentrations are reasonably good. The surface diffusion
coefficient varies from 6 to 8.5 x 107 cm¥/s. It may be pointed out that
Suzuki and Kawazoe (14) had given the following correlation for surface
diffusion coefficient of organic solutes adsorbing from the aqueous phase
onto activated carbon:
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FIG. 3 Batch adsorption of acetic acid on activated carbon. Concentration decay curve.
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FIG. 4 Concentration decay curve for batch adsorption of acetic acid.
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FIG. 5 Kinetics of adsorption of acetic acid on activated carbon.

Do = 1.1 x 107* exp(—5.32T/Ty) 9)

From this correlation the surface diffusion coefficient of acetic acid at
30°C works out to be 1.4 x 1077 cm®/s. However, we point out that this
correlation does not take into account the concentration dependence of
the surface diffusion coefficient. It is known that surface diffusivity in-

TABLE 2
Concentration Dependence of Surface Diffusivity
Initial feed Carbon Surface Equilibrium liquid Surface
concentration weight diffusivity concentration loading
(mmol/L) (g) (cm?/s) (mmol/L) (mmol/g)
333 32 7.0 10.5 0.7615
33.2 16 8.1 19.1 0.9802
33.2 25 6.0 13.8 0.8586
49.0 16 8.5 32.2 1.1860

16.9 16 7.3 7.3 0.6395
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FIG. 7 Initial uptake rate data in batch systems,
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FIG. 8 Effect of surface loading on diffusivity.
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creases with surface loading (adsorption), but the exact nature of the rela-
tionship is not known clearly (3, 4, 5).

In the present study the surface diffusion coefficient also shows a depen-
dence on surface loading as is evident from the plot shown in Fig. 8.

CONCLUSION

The concentration decay curves obtained during batch kinetic studies
on the adsorption of acetic acid on activated carbon were simulated by
a combined external film transfer—surface diffusion model. The surface
diffusion coefficient shows a dependence on surface loading within the
range of feed concentrations studied. The surface diffusion coefficient will
find application in the simulation of column breakthrough behavior for
this system.
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NOMENCLATURE

A term defined in Eq. (7)
Bi Biot number

C concentration in liquid (mmol/L)

Dy surface diffusivity (cm?/s)

K term defined in Eq. (7)

ke external film transfer coefficient (cm/s)
q concentration in adsorbed phase (mmol/g)
R particle radius (cm)

¥ radial position in adsorbent (cm)

T temperature (°K)

Ty boiling point of adsorbate (°K)

t time (s)

u Dimensionless liquid concentration

Ve volume of liquid (L)
w weight of carbon (g)

Greek Symbols

Ps solid density (g/L)

p dimensionless radial distance

T dimensionless time

n dimensionless solid phase concentration

oy, 0z, O3 isotherm parameters
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Subscripts

0
S

—

3

—

f—
—

12.
13.
14.

SooNowaw

initial value
value at solid—liquid interface
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